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Abstract 
 
Bicycles are amongst the most common modes of transportation in our world, and its use ranges 
from commuting to locations to use in competitive sport. While a bicycle might seem to be a 
simple vehicle, it is difficult to model as there are many complex variables to consider such as 
velocity, steering angle, tilt angle, torque, and inertia. In this report, we will model this machine 
as a state-space system and will examine the model’s linearity, time-invariance, stability, 
controllability, and observability. Once deemed usable, the system’s open-loop system will be 
evaluated using a linear quadratic regulator (LQR). Once these examinations are complete, we 
can design an optimized controller so that we can control a bicycle with utmost efficiency and 
performance. This optimized controller will be compared to other variations of the controller and 
open loop model. 
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Problem Description 
The Bicycle 
Bicycles are amongst the most common modes of transportation in our world, and its uses ranges 
from everything to commuting to locations to use in competitive sport. While a bicycle might 
seem to be a simple vehicle, it is difficult to model as there are many complex variables to 
consider such as velocity, steering angle, tilt angle, torque, and inertia. 
 
Figure 1 showcases a simple model of a bicycle. There are other values that are necessary to 
model a bicycle completely, such as forces experienced at the rear and front of the bicycle, but 
those are not included in the following figure as the fundamental state-space representation does 
not have these values included.  
 
 

 
Figure 1. Bicycle’s Dynamic Model [1] 

 
There are other complex models to represent a bicycle, but I chose this model for simplicity as it 
will be easier for others to understand. Assumptions that were made were that the front and rear 
wheels are the same, reference point C is where the center of gravity is, and the bicycle’s motion 
is restricted to a two-dimensional plane. Further assumptions include that the bike is considered 
to be a rigid body, only lateral tire forces are created by the wheels, the velocity of the bike is 
constant, and lastly the steering angle is small (which is reasonable as a rider would never have 
large steering angle as it would make the bike crash immediately).  
 
State-Space Analysis 
As we are trying to design a controller for the bicycle, one of the most appealing options we have 
is to model our system using state-space analysis. The advantages of state-space is that it allows 
us to model our bicycle system in the time domain and it allows us the option to model 
multiple-input-multiple-output (MIMO) systems. The general state-space model this report will 
use are Equation 1, Equation 2, and Equation 3: 
 
 
 
 
 

4 



The purpose of this report is to use state-space methods to design a controller to provide us a 
stable output that can immediately track the input. We will then optimize this controller. 
 
Approach 
The State-Space Model 
We need to calculate the lateral dynamics of the bicycle to find our state-space representation. 
We first begin by calculating the perpendicular forces experienced by the front and rear wheels. 
The front wheel's force takes into account the front wheel's steering angle. Since the front wheel 
steering  angle will be small (a rider would not turn the front wheel with a large angle as it would 
make them instantly unstable), we can estimate the lateral force to be simply the sum of the 
lateral force experienced by both rear and front wheels. The mathematical representation can be 
seen in Equation 3: 

We also need to represent the lateral acceleration as centripetal acceleration as the wheels are 
turning on a fixed point, and this representation is seen in Equation 4, 

and then we substitute Equation 4 into Equation 3. This gives us the critical Equation 5, which is  

Since the bicycle turns by the angular motion about the vertical axis, we need to consider the 
yaw dynamics. We can represent this in the critical Equation 6 as  

Again, since the steering  angle of the front wheel will be small, we can estimate it to be 
negligible, hence the approximation in Equation 6. We now need to represent the front and rear 
wheel's with the linear tire model [2].This gives us Equation 7 and Equation 8, which are  
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In Equation 7 and Equation 8,  and  represents the cornering stiffness of the front and rear 
wheels. The cornering stiffness is a constant, and it is the negative of the rate of change of lateral 
force with respect to change in the slip angle [3]. The slip angle is the ratio of forward and lateral 
velocities in the form of an angle [4] 
 
We can now substitute Equation 7 and Equation 8 into Equation 5 and Equation 6 respectively, 
which brings us to the form needed to represent the bicycle in state-space form. Then we modify 
the equations so that we get the differential of the lateral velocity and the the differential of the 
angular velocity. We get Equation 9 and Equation 10, which are 

 

Using Equation 9 and Equation 10, we can get our state space representation, as seen in Equation 
11 and Equation 12. Note the substitution that occurs for the 𝑥̇ vector: 

 

Realistic values for the constant coefficients, as seen in Table 1, were researched and later 
assigned to each of the bicycle’s values [5][6][7][8][9]. These estimated values represent a 
typical bicycle that an average consumer could buy. It is also assumed the same tires will be used 
for the front and the rear, and as a result the same cornering stiffness was used. The input will be 
the steering angle, and the out put is the angular acceleration. 
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Table 1. Values for Bicycle Components 

 
Model Analysis 
We need to check for certain requirements before designing a controller. These properties 
include linearity, time-invariance, stability, controllability, and observability of our model. In 
order for us to establish that our model is linear, we need to ensure our system consists of only 
real numbers. Since Equation 11 and Equation 12 were able to be evaluated, we know the system 
is linear.  
 
If the entire bicycle’s motion was modeled, such as the bike accelerating from no movement to 
movement, and eventually decelerating to a complete stop, we could not use state-space to 
design a controller. The reason why is due to the bicycle’s speed being dependent on time when 
accelerating and decelerating.  However, what makes us able to still use state-space is the clever 
usage of a constant velocity. Using the average speed of an average rider, we can treat velocity 
as a constant. This means the constant velocity used is not dependent on time, allowing us to 
make the model to be time-invariant. As a result, our model is a linear, time-invariant (LTI) 
system. 
 
To check for stability, we need to evaluate the eigenvalues for the A matrix. Using MATLAB’s 
eig( ) function, we were able to evaluate Equation 13, 

and we get the eigenvalues to be at locations = 0, -8.3556, 0. Since the eigenvalues are not 
positive in magnitude, this system is never unstable. However, the eigenvalues are not all less 
than zero, and as a result this model is marginally stable.  
 
Since we determined the stability, we can determine the controllability and observability of the 
model. Using MATLAB’s ctrb() and obsv() functions, we can evaluate Equation 14 and 
Equation 15 respectively: 
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Coefficient Value Units 

=  150 N/deg 

m 8.16 kg 

 4.4 m/s2 

 0.35 m 

 0.625 m 

 30*(10^5) kg-m2 

, (13) 



We can determine the controllability and observability of the states by subtracting the rank of 
each matrix from the length of the A matrix. Using MATLAB, this was achieved by using the 
rank( ) and length( ) functions. All of the states were controllable, but some of the states were not 
observable.  
 
We need to evaluate if the system can be made into an observable state, so we need to evaluate 
the Diagonal Modal Form. We can use MATLAB function  [csys, T] = canon( ), and evaluate it 
for the system in the ‘modal’ form. We can use csys and the product of the C matrix and the 
transformation matrix T. It was determined that two of the modes were unobservable, and as a 
result the system is not detectable.  
 
We can use minimal realization to see if an altered version of the system can be controllable and 
observable. Using the MATLAB function minreal( ), we can get a new system where the  
state column and row for matrices A, B, C, and D are removed. Since this new system is 
minimally realized, we now know that the system now has the desired characteristics we need for 
designing the controllers.  
 
With our new system, we need to reevaluate our eigenvalues to determine stability, realize the 
new system’s controllability and observability, and lastly reevaluate if the new system has any 
state that is unobservable or uncontrollable. Now, using minimal realization, the system is stable, 
controllable, and observable. 
 
Controller Design 
Now that we established that our model has the desired characteristics needed to design a 
controller, a stable sinusoid and a step function were added to the model to create a baseline 
output for us to achieve. When riding, a biker makes slight adjustments in their steering angles 
when moving, and this baseline output helps simulate these adjustments. Further, this baseline 
output was created so that we can evaluate the effectiveness of the controller. 
 
Now we need to design an optimized controller. Since there is no reference given to help us 
decide the placement of the poles, we can use a linear quadratic regulator (LQR) to design the 
controls. One could have considered using the Ackerman’s formula, but this is not possible as we 
have no reference to where the pole should be. However, the LQR approach has some 
advantages that one should consider. LQR allows for immediate in its calculations for the 
optimal gain matrix and its approach’s structure is the same as the Ackerman’s approach. 
 
Using the MATLAB lqr( ) function, we can create a model of our bicycle. The lqr( ) model needs 
the inputs including the open-loop system, Q matrix, and R matrix. The Q matrix adds a 
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magnitude to the states, and the R matrix pertains to the control effort. To model use the Q 
matrix effectively, use the original Q matrix , as seen in Equation 16, 

and change the values of 1 in the equation. This step will be further explored in the Simulations 
section. The 2x2 version of the Equation 16 will only be considered as the minimally realized A 
matrix is also a 2x2 matrix. The size of the A matrix and Q matrix need to be identical. 
 
When considering the control effort R, which is dictated by the limitation of a machine, we need 
to realize that no restrictions were given to us. As a result, for simplicity, a value of one was 
assigned to the R.  
 
After evaluating the lqr( ) funcion, we are given the gain matrix K, the solution of the algebraic 
Riccati equation (S), and the closed loop poles (P) for the input system. Now we can evaluate the 
closed loop representation of matrix A, which is defined as , and this transformation is 
represented by Equation 17, 

Using the new closed loop function, we can insert it into MATLAB’s Simulink function, which 
will show the outputs of the different models and controllers. We could also add the reference 
tracking tinto the control scheme. We can calculate the gain matrix N using Equation 18, 
 

and insert it into Simulink. 
 
Simulations 
Initial Simulink Model 
We first start modeling our bicycle system with the initial open loop state-space model that was 
defined by Equation 11 and Equation 12, with the values in Table 1 included. The system’s 
structure in Simulink can be seen in Figure 2. 
 

 
Figure 2. Open Loop Model in Simulink 
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N= -(C ( A - BK)-1 B)-1, (18) 



Simulink is useful for analysis since it has a state-space model built in. An input ranging from 0 
to 23 [Hz] was inserted to model the steering angle (so it models the steering angle and not 
frequency). The reason why the input range is limited to 0 to 23[Hz] is attributed to the fact we 
used the small angle assumption in our math. If we increase the inputs range, it would make the 
mathematical work wrong as it would violate the small angle assumptions used. It is worth 
mentioning again that a small steering is fine as a small steering angle still models most biking 
situations well. However, a variety of inputs, including a steady-state sinusoid, and the case 
when the frequency decreases from 23 to o [Hz]. 
 
Control Added 
Now that we want to add a controller to our Simulink model, we have to break apart the 
convenient state-space block into its components. Keep in mind we do not need to model the D 
vector as it is simply zero in magnitude. The new simulink model now includes the feedback 
gain K matrix, which turns the structure of the model to a closed loop model. Figure 3 showcases 
the new simulink model. 

 
Figure 3. Closed Loop Model Modified for Controller in Simulink 

 
Recall the Approach section of this report. Using the optimal control method, we calculated the 
K matrix. The input is the same as that from the Initial Simulink Model, including the variety of 
inputs used.  
 
Reference Tracking Added 
In order to add reference tracking, we use MATLAB to calculate the gain Matrix N. We add the 
gain Matrix N into our Simulink model. Other than this simple addition, the Simulink model is 
fundamentally identical to Figure 3. The new model with the added Matrix N can be seen in 
Figure 4. 
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Figure 4. Closed Loop Model With Reference Tracking in Simulink 

 
The new simulink model has the same conditions as the previous models, which includes the 
variety of inputs and a scope to measure the output 
 
If we were to simply use our initial Matrix N, which was derived from the original Q matrix, 
which can be seen in Equation 16, our controller would still not be optimized. While it is much 
better than the initial models, which will be explored in the forthcoming Results section, it can 
still be improved by altering the Q matrix. In our case, we only needed to alter the top-left one 
from Equation 16. 
 
Results 
Direct Control System 
While other inputs were tested and verified, for the case of simplicity and impactfulness of this 
report, the only responses that will be discussed is when we have the input ranging from 0 to 23 
[Hz] was inserted to model the steering angle. The reason for this decision is that if we were to 
use only one value, which is represented as a step function, it would only give a small idea of 
how the system is affected  by changing the steering angle. By having an input that changes from 
0 to 23 [Hz] (again Hz is what Simulink uses, it actually represents the steering angle), we can 
have a better idea of how the steering angle actually affects the angular acceleration. 
 
Figure 5 showcases the output of the open loop model in Simulink. What is supring is the 
relatively small value of the output angular acceleration. This can possibly be attributed to the 
amounts of assumptions we made to make the math simpler.This model still showcases the 
relatively large amount of variation experienced by the output experiences without a controller. 
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Figure 5. Open Loop Model Output 

 
We can now look at the case when the closed loop model was implemented in Figure 6. We can 
already see a proportionally large difference between the open loop and closed loop. While the 
open loop model’s output was actually closer to approaching stability in terms of magnitude, the 
closed loop model approaches stability much faster. The closed loop model has less variability in 
the magnitude of the output when oscillating. To reiterate, the closed loop model has a much 
larger output, which we do not want, but it has less magnitude change when it does reach 
stability. Adding a controller will help bring this desired attribute.  
 

 
Figure 6. Closed Loop Model Output 

 
Now we can add a controller to our model. Figure 7 showcases the output angular acceleration 
when the reference gain was added. While this looks like the output seen in figure 5, after closer 
inspection, we notice that this new output has less magnitude of error (by 0.5 respectively) and 
the oscillation of the error reduced by half. This is the first reasonable response as it could be 
used in some applications as a usable controller.  
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Figure 7. Reference Tracking Model Output 

 
However, as much as an improvement the previous case was, we can still optimize it into a much 
more effective controller. The previous case uses the ordinary Q matrix, which can be seen in 
Equation 16. To optimize our controller, we can use the same LQR analysis, allowing us to do 
pole placement, by altering the Q matrix. We simply need to only alter the top-left one from 
Equation 16. We can keep R to remain the same value of one, and change Q to [21 0; 0 1]. This 
new output can be seen in Figure 8. If we were to increase the 21 value by anymore, we would 
see an overshoot occur, which we do not want. 
 

 
Figure 8. Optimized Model Output 

 
At first glance, it seems that altering the Q matrix actually made our output worse. However, 
after closer inspection, we notice that the magnitude of the output reduces almost by a factor of 
five. This shows extremely well that our bike is becoming more stable as time increases since the 
angular acceleration, or in other words the change in angular velocity, approached stability 
almost immediately. This model could become even more accurate if we were given a R value to 
use as the one we chose was arbitrary. 
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Summary  
While it may be amongst the most common modes of transportation and simple at first glance, 
bicycles are very complex machines. Our bicycle model is one of the simplest models, which 
includes a lot of idealized assumptions constrained in a two-dimensional plane. However, this 
very model is still analized by the automotive gives valuable information that, when expanded 
upon, can even model complex car dynamics.  
 
Using state-space analysis for control analysis, we were able to design an optimized controller. 
First we had to solve preliminary physics problems to model the bicycle in state-space form. 
After tham, before we could attempt design, we had to check for  linearity, time-invariance, 
stability, observability, and controllability.  
 
Using minimal realization, we were able to get a model that we could use to design a controller. 
Using Simulink and MATLAB, we were able to see how the steering angle affects the change in 
angular acceleration. The faster the angular acceleration stabilizes and remains low, the more 
stable the system is.  We then realized an optimized controller. 
 
While this is an extremely good model for our case, it is only valid in an extremely idealized 
version of the bicycle model. The model can quickly become complex once we add a third 
dimension to the model, use different sizes of wheels, and even use a nonlinear state-space 
model.  
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