State-Space Modeling and Analysis of Bicycle Dynamics

Vedant Chopra November 24, 2020

ECE 5115 Controls System Lab II

Add Values to Coefficients

Researched values to substitute into state-space model

Will represent an average bike with a average biker

Coefficient	Value	Units
$c_{\alpha f} = c_{\alpha r}$	150	N/deg
m	8.16	kg
Vlon	4.4	m/s ²
l _r	0.35	m
l _f	0.625	m
$I_{\rm z}$	30*(10^5)	kg-m ²

SS Model

Analysis By hand analysis would

be arduous and time-consuming

Preliminary MATLAB Code

%Setup syms u x1 x2 x3 x1p x2p x3p;

car = 150; caf = 150; m = 8.16; vlon = 4.4; lr =0.35; lf = 0.625; iz = 30*(10^5);

eq1 = -(x1p)-((car +caf)/(m*vlon))*x1 +((car*lr +caf*lf)/(m*vlon))*x3 -vlon*x3+(caf/m)*u==0; eq2 = x3==x2p;
$$\begin{split} & eq3 = -x3p + ((lr*car \\ & +lf*caf)/(iz*vlon))*x1 - (((lf^{2})*caf \\ & +(lr^{2})*car)/(iz*vlon))*x3 + (caf/iz)*lf*u==0; \end{split}$$

$$\begin{split} A &= [-((car + caf)/(m^*vlon)) \ 0 \ ((((car^*lr + caf^*lf)/(m^*vlon)) - vlon)); \ 0 \ 0 \ 1; ((lr^*car - lf^*caf)/(iz^*vlon)) \ 0 \ -(((lf^2)^*caf + (lr^2)^*car)/(iz^*vlon))]; \end{split}$$

B = [(caf/m); 0 ;(caf/iz)*lf]; C = [0 0 1]; D = 0; sys=ss(A,B,C,D);

Checking Requirements

Our model is also linear and time-invariant

%Check for stability: eigenvalues e = eig(A);% 0, -8.3556, 0

%Check for observability and controllability Mo = obsv(A,C); Mc = ctrb(A,B); %Check for number of unobservable and uncontrollable states uobs = length(A) - rank(Mo); %1, so unobservable uctr = length(A) - rank(Mc); %0, so controllable %Convert to Diagonal Modal Form [csys,T] = canon(sys,'modal');

%Evaluate Detectability detect=csys.C*T; %Evaluates to [0 0 1], two modes are %unobservable

Minimal Realization

Removes the x3 variable, which results in a controllable and observable system

Minimal Realization and Repetition

%Use Minimal Realization and Revaluation nsys = minreal(sys); %x3 state was removed from A,B,C,D

ne = eig(nsys); nMo = obsv(nsys.A,nsys.C); nMc = ctrb(nsys.A,nsys.B); nuobs = length(nsys.A) - rank(nMo); %0, so observable nuctr = length(nsys.A) - rank(nMc); %0, so controllable

Controller Design

For Feedback Gain K:

%Define Q and R Q = [21 0; 0 1]; %Started with Original Q=[1 0; 0 1], adjusted to meet most R = 1; %Made 1 since we were given no machine %limits, good for simple math

%Calculate Gain K, ARE Solution S, and Closed-loop %Poles (P) [K,S,P] = lqr(nsys,Q,R);

For Reference Gain N:

%Calculate Gain N for error tracking N = -(nsys.C*(nsys.A-nsys.B*K)^-1*nsys.B)^-1;

Summary

- → Bicycle Model
- → State-Space Model
- → Requirement Check
- → Create Optimized Controller

17

Acknowledgements

Work Cited

 B. Zheng, "Active steering control with front wheel steering," Jan-2004. [Online]. Available: https://www.researchgate.net/figure/Bicycle-model-for-steering-dynamics-The-corresponding-linearized-dynamic-equation-is_f ig1_4119228. [Accessed: 22-Nov-2020].

THIS VIDEO WAS PRODUCED AS PART OF THE REQUIREMENTS FOR ECE 5115 CONTROL LAB II AT THE CULLEN COLLEGE OF ENGINEERING UNIVERSITY OF HOUSTON HOUSTON, TEXAS

Images used under United States Public Domain From Researchgate user Active Steering Control with Front Wheel Steering: "Bing Zheng"

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/